Legal Writing for Legal Reading!

Archive for the month “February, 2018”

Why religion is not going away and science will not destroy it

Every now and again I come across a fantastic article the warrants posting here; I recently came across one in Aeon which, I thought, was pretty insightful. Be edified.


In 1966, just over 50 years ago, the distinguished Canadian-born anthropologist Anthony Wallace confidently predicted the global demise of religion at the hands of an advancing science: ‘belief in supernatural powers is doomed to die out, all over the world, as a result of the increasing adequacy and diffusion of scientific knowledge’. Wallace’s vision was not exceptional. On the contrary, the modern social sciences, which took shape in 19th-century western Europe, took their own recent historical experience of secularisation as a universal model. An assumption lay at the core of the social sciences, either presuming or sometimes predicting that all cultures would eventually converge on something roughly approximating secular, Western, liberal democracy. Then something closer to the opposite happened.

Not only has secularism failed to continue its steady global march but countries as varied as Iran, India, Israel, Algeria and Turkey have either had their secular governments replaced by religious ones, or have seen the rise of influential religious nationalist movements. Secularisation, as predicted by the social sciences, has failed.

To be sure, this failure is not unqualified. Many Western countries continue to witness decline in religious belief and practice. The most recent census data released in Australia, for example, shows that 30 per cent of the population identify as having ‘no religion’, and that this percentage is increasing. International surveys confirm comparatively low levels of religious commitment in western Europe and Australasia. Even the United States, a long-time source of embarrassment for the secularisation thesis, has seen a rise in unbelief. The percentage of atheists in the US now sits at an all-time high (if ‘high’ is the right word) of around 3 per cent. Yet, for all that, globally, the total number of people who consider themselves to be religious remains high, and demographic trends suggest that the overall pattern for the immediate future will be one of religious growth. But this isn’t the only failure of the secularisation thesis.

Scientists, intellectuals and social scientists expected that the spread of modern science would drive secularisation – that science would be a secularising force. But that simply hasn’t been the case. If we look at those societies where religion remains vibrant, their key common features are less to do with science, and more to do with feelings of existential security and protection from some of the basic uncertainties of life in the form of public goods. A social safety net might be correlated with scientific advances but only loosely, and again the case of the US is instructive. The US is arguably the most scientifically and technologically advanced society in the world, and yet at the same time the most religious of Western societies. As the British sociologist David Martin concluded in The Future of Christianity (2011): ‘There is no consistent relation between the degree of scientific advance and a reduced profile of religious influence, belief and practice.’

The story of science and secularisation becomes even more intriguing when we consider those societies that have witnessed significant reactions against secularist agendas. India’s first prime minister Jawaharlal Nehru championed secular and scientific ideals, and enlisted scientific education in the project of modernisation. Nehru was confident that Hindu visions of a Vedic past and Muslim dreams of an Islamic theocracy would both succumb to the inexorable historical march of secularisation. ‘There is only one-way traffic in Time,’ he declared. But as the subsequent rise of Hindu and Islamic fundamentalism adequately attests, Nehru was wrong. Moreover, the association of science with a secularising agenda has backfired, with science becoming a collateral casualty of resistance to secularism.

Turkey provides an even more revealing case. Like most pioneering nationalists, Mustafa Kemal Atatürk, the founder of the Turkish republic, was a committed secularist. Atatürk believed that science was destined to displace religion. In order to make sure that Turkey was on the right side of history, he gave science, in particular evolutionary biology, a central place in the state education system of the fledgling Turkish republic. As a result, evolution came to be associated with Atatürk’s entire political programme, including secularism. Islamist parties in Turkey, seeking to counter the secularist ideals of the nation’s founders, have also attacked the teaching of evolution. For them, evolution is associated with secular materialism. This sentiment culminated in the decision this June to remove the teaching of evolution from the high-school classroom. Again, science has become a victim of guilt by association.

The US represents a different cultural context, where it might seem that the key issue is a conflict between literal readings of Genesis and key features of evolutionary history. But in fact, much of the creationist discourse centres on moral values. In the US case too, we see anti-evolutionism motivated at least in part by the assumption that evolutionary theory is a stalking horse for secular materialism and its attendant moral commitments. As in India and Turkey, secularism is actually hurting science.

In brief, global secularisation is not inevitable and, when it does happen, it is not caused by science. Further, when the attempt is made to use science to advance secularism, the results can damage science. The thesis that ‘science causes secularisation’ simply fails the empirical test, and enlisting science as an instrument of secularisation turns out to be poor strategy. The science and secularism pairing is so awkward that it raises the question: why did anyone think otherwise?

Historically, two related sources advanced the idea that science would displace religion. First, 19th-century progressivist conceptions of history, particularly associated with the French philosopher Auguste Comte, held to a theory of history in which societies pass through three stages – religious, metaphysical and scientific (or ‘positive’). Comte coined the term ‘sociology’ and he wanted to diminish the social influence of religion and replace it with a new science of society. Comte’s influence extended to the ‘young Turks’ and Atatürk.

The 19th century also witnessed the inception of the ‘conflict model’ of science and religion. This was the view that history can be understood in terms of a ‘conflict between two epochs in the evolution of human thought – the theological and the scientific’. This description comes from Andrew Dickson White’s influential A History of the Warfare of Science with Theology in Christendom (1896), the title of which nicely encapsulates its author’s general theory. White’s work, as well as John William Draper’s earlier History of the Conflict Between Religion and Science (1874), firmly established the conflict thesis as the default way of thinking about the historical relations between science and religion. Both works were translated into multiple languages. Draper’s History went through more than 50 printings in the US alone, was translated into 20 languages and, notably, became a bestseller in the late Ottoman empire, where it informed Atatürk’s understanding that progress meant science superseding religion.

Today, people are less confident that history moves through a series of set stages toward a single destination. Nor, despite its popular persistence, do most historians of science support the idea of an enduring conflict between science and religion. Renowned collisions, such as the Galileo affair, turned on politics and personalities, not just science and religion. Darwin had significant religious supporters and scientific detractors, as well as vice versa. Many other alleged instances of science-religion conflict have now been exposed as pure inventions. In fact, contrary to conflict, the historical norm has more often been one of mutual support between science and religion. In its formative years in the 17th century, modern science relied on religious legitimation. During the 18th and 19th centuries, natural theology helped to popularise science.

The conflict model of science and religion offered a mistaken view of the past and, when combined with expectations of secularisation, led to a flawed vision of the future. Secularisation theory failed at both description and prediction. The real question is why we continue to encounter proponents of science-religion conflict. Many are prominent scientists. It would be superfluous to rehearse Richard Dawkins’s musings on this topic, but he is by no means a solitary voice. Stephen Hawking thinks that ‘science will win because it works’; Sam Harris has declared that ‘science must destroy religion’; Stephen Weinberg thinks that science has weakened religious certitude; Colin Blakemore predicts that science will eventually make religion unnecessary. Historical evidence simply does not support such contentions. Indeed, it suggests that they are misguided.

So why do they persist? The answers are political. Leaving aside any lingering fondness for quaint 19th-century understandings of history, we must look to the fear of Islamic fundamentalism, exasperation with creationism, an aversion to alliances between the religious Right and climate-change denial, and worries about the erosion of scientific authority. While we might be sympathetic to these concerns, there is no disguising the fact that they arise out of an unhelpful intrusion of normative commitments into the discussion. Wishful thinking – hoping that science will vanquish religion – is no substitute for a sober assessment of present realities. Continuing with this advocacy is likely to have an effect opposite to that intended.

Religion is not going away any time soon, and science will not destroy it. If anything, it is science that is subject to increasing threats to its authority and social legitimacy. Given this, science needs all the friends it can get. Its advocates would be well advised to stop fabricating an enemy out of religion, or insisting that the only path to a secure future lies in a marriage of science and secularism.

By Peter Harrison and originally published in Aeon on September 7, 2017 and can be found here.


Yessource: Union Sessions

Here are my latest uploads to YesSource, my Yes rarities youtube page (about which you can read here).  This post is another addition to my series of Yes music posts and a collection of all my Yes-related posts is here.  Yes, of course, is a, if not the, premier progressive rock band, and I am an enormous fan of it.

You can see all of my Yessource uploads here.

My latest YesSource uploads can be found here:

Buyer Beware

Check out Faye Cohen’s post to her blog Toughlawyerlady!


The general public does not seem to be aware that purchase, transfer, ownership and/or sale of real estate are often fraught with problems which are created by people taking legal shortcuts or failing to conduct due diligence, which means investigation and assessment into the quality and validity of the purchase, transfer, ownership and/or sale of real estate. As a result, many people find themselves in real estate situations which are confusing, expensive, and, often, regrettable. This doesn’t have to be the case if certain steps are taken. As the axiom goes — “an ounce of prevention is worth a pound of cure.”

The buyer alone bears responsibility for due diligence.    So, buyer be beware of:

Purchase, Title or Transfer Issues:

 Buyer Beware #1: Do NOT transfer title to a property into your name or into the name of an entity controlled by you without having an insured title search conducted…

View original post 1,357 more words

6th Circuit Remands RLUIPA “Equal Terms” Zoning Challenge

This is from religionclause.blogspot.com which you can find here:

In Tree of Life Christian Schools v. City of Upper Arlington, (6th Cir., May 18, 2016), the U.S. 6th Circuit Court of Appeals in a 2-1 decision reversed and remanded in a RLUIPA land use case, finding that material facts remain as to the application of RLUIPA’s “equal terms” provision.  At issue is an Ohio city’s refusal to rezone a large office building for use as a religious school. The office building is in an area zoned as an “Office and Research District” — an area designed for uses that would maximize the city’s tax revenues. The majority said in part:

The religious land use that TOL Christian Schools proposes is, we assume without deciding, deleterious to the purpose of the regulation at issue (which we assume to be increasing income-tax revenue). But the nonreligious uses that the government concedes it would allow seem to be similarly situated to the regulation….. [T]he government suggested at oral argument that it would prefer that [the property] be used for an ambulatory care center or outpatient surgery center. But we cannot assume as a fact… that an ambulatory care center (or an outpatient surgery center, or a data and call center, or office space for a not-for-profit organization, or a daycare) would employ higher-income workers than TOL Christian Schools would….

You can learn more about this issue here.

Yessource: Union Album Edits

Here are my latest uploads to YesSource, my Yes rarities youtube page (about which you can read here).  This post is another addition to my series of Yes music posts and a collection of all my Yes-related posts is here.  Yes, of course, is a, if not the, premier progressive rock band, and I am an enormous fan of it.

You can see all of my Yessource uploads here.

My latest YesSource uploads can be found here:

Student’s Complaint Over Expulsion From Catholic High School Dismissed Under Ecclesiastical Abstention Doctrine

This is from religionclause.blogspot.com which you can find here:

In In re St. Thomas High School, (TX App., May 1, 2016), a Texas state appellate court held that the ecclesiastical abstention doctrine requires dismissal of a breach of contract lawsuit against a Catholic high school brought by a 16-year old student who was expelled and by his parents. The expulsion came after the parents sent the school a letter about the handling of a grade dispute.  The letter complained that the teacher involved had not called the parents as they had requested.  It alleged that when the teacher told the student the reason for failing to call– he was too busy preparing for a romantic night with his wife to celebrate their wedding anniversary– that this amounted to engaging in a discussion with the student “in a sexually harassing fashion.”

The school concluded that the false accusations of sexual harassment against the teacher, made it impossible for other teachers to teach the student without fear of similar charges. The court said in part:

we conclude that St. Thomas’s status as a Catholic high school does not place it outside the ecclesiastical abstention doctrine’s reach. No less than a Catholic church, St. Thomas is a religious institution enjoying First Amendment protection for the free exercise of religion….

This record belies any contention that spiritual standards and religious doctrine play no role in the parties’ dispute. Plaintiffs expressly relied on the Catholic nature of a St. Thomas education to justify their demands….  In addition … this record also demonstrates impermissible interference with St. Thomas’s management of its internal affairs and encroachment upon its internal governance.

You can learn more about this issue here.

Yessource: Union Promo Album

Here are my latest uploads to YesSource, my Yes rarities youtube page (about which you can read here).  This post is another addition to my series of Yes music posts and a collection of all my Yes-related posts is here.  Yes, of course, is a, if not the, premier progressive rock band, and I am an enormous fan of it.

You can see all of my Yessource uploads here.

My latest YesSource uploads can be found here:

The Myth of Scientific Objectivity

Every now and again I come across a fantastic article the warrants posting here; I recently came across one in First Things which, I thought, was pretty insightful. Be edified.


My friends who work in scientific fields were aghast when they saw that the organizers of a planned “March for Science” had tweeted that “colonization, racism, immigration, native rights, sexism, ableism, queer-, trans-, intersex-phobia, & econ justice are scientific issues [black power emoji][rainbow emoji].” Who can blame them for their horror? The impartial search for truth is having enough problems these days, what with the discovery that many prominent scientific results, over a broad swath of fields, are non-replicable and likely false. It seems altogether the wrong time to inject a dose of partiality.

My correspondents always hasten to add that, of course, they’re in favor of racial and gender-based outreach that seeks to increase the relatively low proportion of working scientists who are women or who belong to certain ethnic groups. They inform me that the institutions and practices of science are still shaped by covert and overt misogyny and racism, and I have no reason to doubt them. What makes them wary, however, is the even more illiberal desire to inject the views and interests of progressive social causes into the methodology of science itself (hypothesis formation, experiment, analysis) and perhaps even into its conclusions. This, in their eyes, would represent an overstepping of ideological bounds and a transgression against the most sacred ideals of the scientific enterprise (empiricism, objectivity, impartiality). It would transform science into a different activity, one which they do not recognize and of which they do not wish to be a part.

This is a naive view. In fact, the purported objectivity of scientific inquiry is a damaging myth, and the illiberal instincts of the Marchers for Science represent a corrective, though not a cure. Science has been ideologically captured since its birth, and “value-laden inquiry” is not a recent deviation but is rather fundamental to its successful practice. The successful conquest of the institutions of science by overtly politicized forces would change little on the ground, but it would help to update society’s perceptions so that they match the underlying reality. We should welcome the March for Science as it sets out to destroy the academy’s undeserved reputation for neutrality and to reveal science for what it has always been.

According to the popular understanding, science is simply the comparing and ordering of sense data originating from experiment or from the observation of natural phenomena. If we are lucky, patterns or other forms of order emerge from these data. Scientists can then build theories that describe and abstract these regularities, and perhaps even use them to make predictions about as-yet-unobserved phenomena. Finally, these theories are put to the test by new observations and discarded if they contradict the best available new data. This is a process of induction, whereby simple, raw observations are grouped together in such a way that the law that connects them becomes evident. The higher-level relations and associations are grouped in turn, such that the meta-law which underlies them all comes into focus, and so on higher and higher up the chain of abstraction, toward theories ever more rarefied and powerful. Yet in principle, even the most complex theory does nothing more than tie together a vast number of simple observations, each of which is pure, objective, and incontestable.

A crucial feature of this story, and the source of a great deal of its attraction, is the freedom it offers from the oppressive legacies of ideology, privilege, and prejudice that taint every human institution. If science is nothing more than the cataloging and systematization of information directly accessible to our senses, then it could be a source of knowledge that is objective, neutral, and accepted by all. Moreover, if each step of this process is solely determined by the data—that is, if at no point does a theorist have a free choice between alternative interpretations or generalizations—then we can be sure that no lingering taint in the scientist’s mind will impress itself upon the completed theory. The scientist is like an automaton, albeit a clever and subtle one, transforming inputs into outputs, discovering rather than inventing, performing a mechanical rather than an artistic task.

This is why those most invested in science as a way of knowing the world react with such horror to the proposal that values, even the progressive values they overwhelmingly share, should inform the scientific method. The threat is not so much that such a program would have grave consequences if carried out, as that the assumptions behind it threaten to undercut what they believe makes science unique. If such a thing as “feminist science” or “XYZ science” were even possible, then it would mean that science as it currently exists might not be perfectly neutral and value-free. It would imply that there are many possible ways of doing science, and that those different ways might reach different answers. Worst of all, it would make who does science a relevant question—a sort of scientific Donatism—opening up the field to further suspicion from its ideological enemies.

The trouble is that this idealized view is wrong. The political, moral, and religious views of a scientist really do affect the results that he gets. Consider the process of theory formation. A theorist is struck by inspiration: Something innocuous, like a passing remark by a stranger at the grocery store, suddenly triggers the realization that two unrelated phenomena can be linked, or an existing body of theory can be simplified or unified through a new form of explanation. The scientist then goes looking for evidence to bolster his theory (the precise opposite, it’s worth noting, of Karl Popper’s rather idealistic conception of the scientific method). Given the messiness and flexibility of all real-world datasets, he will invariably be able to find it. Partisans of the old theory remain unmoved and argue, convincingly, that looked at in a different way, the data support their interpretation instead. Often the ensuing scholarly battle stimulates the development of new experimental techniques, and sometimes these new methods are able to settle the matter decisively. Other times the battle can rage for years, or even decades. Even when questions are settled, it usually isn’t because either the old guard or the upstarts won their rivals over, but because one party failed to make the case to the next generation of students and eventually died off.

Scientists who are caught in the raptures of a new theory will often stick with it for a time even when all available evidence counts against it. Sometimes, such a theory even wins in the end. A dramatic, and perhaps surprising, example comes from one of the most famous scientific theories of the twentieth century: Albert Einstein’s special theory of relativity. A year after Einstein proposed it, the theory suffered a devastating blow from the famous experimentalist Walter Kaufmann, who published an empirical result that appeared to disprove the new theory. We now know that Kaufmann’s equipment was insufficiently sensitive to detect the effect Einstein predicted, and moreover that it was miscalibrated, but it took a decade before this became clear. In the meantime, Einstein brushed aside the criticism and continued propounding his theory, winning an increasing number of converts over time, despite the fact that the best experimental evidence had “refuted” it.

The experience evidently had a profound effect on Einstein. He began his career as a dedicated positivist and empiricist, only losing the faith when it failed him again and again. Rigorous attempts to inductively postulate laws from data brought him only years of stagnation and failure while he searched for the field equations of general relativity, and nearly cost him priority for the discovery. In desperation, Einstein searched for the mathematically simplest explanation, embracing prior philosophical criteria as a constraint on the space of possible theories, and then found his answer almost immediately. He ultimately concluded that, as he put it in his Autobiographical Notes, “no collection of empirical facts however comprehensive can ever lead to the formulation of such complicated equations. A theory can be tested by experience, but there is no way from experience to the construction of a theory.” In other words, the inductive approach to theory-building on which so many of science’s claims to neutrality hang is not only a poor description of science as it exists, but is, because of the limited powers of the human mind, not a way that science even could be done. The consequence of this, as Einstein said in an interview at the end of his life, is that “every true theorist is a kind of tamed metaphysicist, no matter how pure a ‘positivist’ he may fancy himself.”

Einstein’s claim is essentially a practical one: It is far too hard for human beings to reason backward from a mass of complex and entropic data to the compact and simple law that gave rise to it. Yet this argument is not as devastating to the inductivist story of science as it may at first sound. Yes, one might concede, the actual practice of the scientific method may be messy, or even the complete opposite of the inductive approach, but the fact remains that there is a law out there that is generating the data of our experience. So long as we continue to be guided by the data, we will gradually approach closer and closer to the true laws of nature, even if not by inductive means.

But the trouble is that there is never just one such law. Theory is almost always underdetermined by data. It’s simple enough to construct artificial examples of different laws that make identical predictions, but most can be dispatched by Occam’s razor (though note that this is a sneaky application of metaphysics if there ever was one!). History, however, offers something altogether more disturbing: countless examples where data could be explained by two fundamentally different types of theory, trafficking in different approaches, different causal mechanisms, even different ontologies.

Consider, for instance, the astonishing accuracy with which both Newtonian mechanics and general relativity predict the motions of the various bodies in the solar system. This may seem like an odd example—isn’t it a case in which a flawed theory explained the evidence for some time, and was eventually replaced by a better theory? Yes, but as Einstein put it in his Herbert Spencer lecture, On the Method of Theoretical Physics: “We can point to two essentially different principles, both of which correspond with experience to a large extent; this proves at the same time that every attempt at a logical deduction of the basic concepts and postulates of mechanics from elementary experiences is doomed to failure.” If two theories barely inhabiting the same conceptual universe can both explain our observations with such accuracy, what if there’s another? What if there are ten more? What if they give identical predictions beyond the accuracy of any instruments we will build for ten thousand years? When forced to choose between two such radically different theories, parlor tricks like Occam’s razor win us nothing. The choice is philosophical and metaphysical: It can be informed by experience, but can never be settled by science.

In practice, scientists are rarely paralyzed by indecision when faced with situations of this sort, which implies that they must have prescientific metaphysical beliefs to help them to make the choice, even if those beliefs go unstated. Scientific theories compete with one another to explain a given body of evidence while also exhibiting the greatest simplicity, elegance, scope, consonance with other theories, and internal harmony. But they do more than that; they also make claims, implicitly or explicitly, about what evidence needs explaining and what would constitute a satisfactory explanation.

In the official story, evidence inspires us to create theories, or sometimes refutes existing theories. But in reality, theories can also create and destroy evidence by highlighting some sorts of the elementary data of experience as significant while dismissing others. A superficial example of this might be the evidentiary standards of many of the social sciences, where studies achieving a significance value of p < 0.05 are arbitrarily considered to be results that a theory must explain or at least accommodate. There is nothing in nature that recommends a sharp cutoff. It is purely a social and indeed ideological consensus to make p < 0.05 the standard. This is a free parameter of the metatheory which could be varied, and which, given the limited power of most studies, if varied, might very well lead to a different body of “facts” and hence different forms of explanation achieving dominance.

But there are deeper cases of theory affecting the kinds of evidence by which theories are judged. Take the behaviorist school of psychology. According to behaviorism, all human and animal behaviors are merely reactions to external stimuli and previous conditioning. In particular, behaviorists believe the internal states of individuals have no causal effects on their actions, regardless of what those individuals may claim. Now imagine that a behaviorist and a non-behaviorist come up with an identical hypothesis explaining some form of activity, but every individual in their study explains, “Actually, the reason I did it was that I believed it would be wrong to do otherwise.” The non-behaviorist might take this as strong evidence that the hypothesis was incorrect. However, the behaviorist, already committed to a theory of human activity that rejects the causal effects of internal states, might rule out these protestations and refuse to consider them as evidence. Whose methodology is correct? Science cannot tell us the answer. Our beliefs about what even constitutes empirical data with which our science must reckon cannot be self-justifying. Indeed, they can be influenced by whatever theory is currently in vogue.

As with evidence, so with what counts as a satisfactory explanation for a given body of evidence. Taking again our example from psychology, suppose a behaviorist and a non-behaviorist are trying to explain why an individual did something apparently irrational. When asked, the subject replies, “Because I thought that if I did it, I would receive a million dollars.” The non-behaviorist might find this belief to be curious, and might inquire further to discover a reason for the belief, but he would almost certainly consider the belief itself to be a sufficient explanation for the action. The behaviorist, on the other hand, would consider the act of speaking, and perhaps even the act of holding a belief, to be nothing more than another behavior, and therefore not sufficient as an explanation for the observed action, since only external stimuli and conditioning can cause behaviors. So if the non-behaviorist formulated a theory that said “individuals will do strange things if they believe that doing so will result in a million dollars,” the behaviorist wouldn’t even consider this theory to be wrong. Rather, it would be not-a-theory, a category error, something as unscientific as saying that fairies did it.

Behaviorism is not just a pathological case; nor can these issues be dodged by avoiding sciences dependent upon the unobservable inner life of conscious beings. Every theory makes claims about which phenomena demand an explanation in simpler or more fundamental terms, and which are just brute facts about reality that neither need nor permit explanation. For example: Newton’s theory of mechanics had great and immediate predictive success, but it was assailed as unscientific at its birth because, unlike Descartes’s vortices and hooked atoms, it did not offer a causal chain of influences whereby one body affected another.

Many scientists, when pressed, will say that our theories progress precisely by becoming more reductive and demanding explanations for things previously seen as brute facts. But it’s often quite unclear what “more reductive” even means. Consider the introduction of variational methods into mechanics by Jean d’Alembert, Joseph-Louis Lagrange, and William Rowan Hamilton. The use of an extremal principle to compute the behavior of a system was seen as unacceptably teleological and non-mechanistic (and continues to be resisted by each new generation of undergraduates). I can’t count the number of times I’ve explained the Lagrangian approach to a non-physicist scientist, only to be met with a dropped jaw and a “that isn’t science!” Perhaps the only reason physicists are comfortable with the approach is that they refuse to think too hard about what they’re doing.

Well, and perhaps also because it works astonishingly well. Most scientific fields today are conceptualized as the handmaidens of technology. Consequently, the forms of explanation which are accepted as scientific tend to be those that give humanity greater powers of prediction and control. This was not an inevitable development, however, and different fields of science have succumbed to the Promethean temptation to varying degrees. Is it possible that a science which valued different qualities in an explanation could have evolved along different lines and given rise to alien theories that traffic in fundamentally different concepts? One of the greatest tragedies of the globalization and homogenization of scientific inquiry is precisely that we are now far less likely to discover these, and other roads not taken.

Science is not simply the answering of questions; it is also the choosing of which questions to ask. Contrary to the inductivist account, facts and data do not just present themselves to us. Experimental and observational studies must be formulated and conducted, often at great cost, to gather them. This is commonly done in the service of one or more research programs—broad efforts to answer a question or to understand a phenomenon. But these programs grow out of an extended dialogue within a community of scientists, or due to funding pressures, and either way are the product of the norms, values, and interests of broader society. Thus these norms and values shape not only what qualifies as evidence, but what evidence is even available to be considered in need of explanation.

For instance, imagine two studies on gift-giving, one conducted by a neuro-economist and the other by a sociologist. Were we to have only the former’s data, we might conclude that people give gifts in response to an activation of the anterior cingulate gyrus. Were we to have only the latter’s, we might conclude that people engage in gift-giving in order to consolidate their social status. Both accounts might be accurate and useful answers to the narrow question that they sought to address, while at the same time being utterly impoverished accounts of human behavior. The trouble comes when we confuse the mere fact that a theory explains some empirical data with the notion that a theory tells the “whole truth” about a facet of the world. Often, the data were gathered in response to the theory, and no theory can be successfully falsified by data that nobody looked for.

Another way in which our metaphysical beliefs construct the body of evidence that is available for theory to address lies in the ways we classify and categorize the world. Every theory makes choices about what elements it considers to be the primitive constituents of the world, what groupings of those elements make for interesting objects of study, and what makes objects more closely or more distantly related. One could imagine a social science that instead of treating individuals as its fundamental units of analysis instead chose families, or neighborhoods, or athletic clubs. Such a science doubtless would come up with very different empirical “laws” governing the behaviors and dynamics of human institutions. Indeed, one of the great triumphs of feminist thought was precisely that it constructed “women” as a separate category and subject of inquiry, thereby turning “how does this policy affect women?” into an interesting scientific question, unlike, say, “how does this policy affect red-haired people?” All such competing schemes for carving the world at its joints represent the enactment of a particular ontological and metaphysical vision.

Again, this all remains true when one moves to “harder” sciences. In fact, the disciplinary boundaries themselves are contingent choices about how to chop up the universe that end up influencing the kinds of questions that are asked and answered. But lay that aside and contemplate a question like “how should we classify forms of cancer?” By the organ affected? By genetic similarity? By typical biological course in the absence of treatment? All of these have been tried, and all give very different answers for when one cancer is “like” another.

To all this the pragmatists have a partial answer: “Pick the divisions that are the most fruitful! The ones that result in useful regularities!” The trouble with this answer is that the world is absolutely rotten with order. Much of it is real, and much more is conjured into being when fallible, order-seeking minds go hunting for it. A great many schema for organizing the world, such as the classification of beetles by visual appearance rather than by genetic similarity, generalize gracefully beyond the examples that inspired their development, despite presumably not tracking the deep cleavages that underlie reality and that science seeks to map.

None of this is meant as a counsel of despair, or a suggestion that the world is so inaccessible to our reason that we should speak only about measurements without reference to underlying reality, or any other of the rather silly views that have sprung from the revelation that science is a contingent, underdetermined social phenomenon. The point, rather, is just that science is not unique, and that it can never be self-justifying. Questions like “which science?” and “why this science?” are often useful ones. Scratch a scientist, find a metaphysicist, even if he doesn’t realize it.

Einstein, acutely sensitive to these issues, was in favor of bringing the oft-unstated prescientific beliefs of scientists out into the light and making them explicit. So, in a very similar way, are feminist philosophers of science like Helen Longino, Lynn Nelson, and Elizabeth Anderson. The difference is that where Einstein’s nonempirical, metaphysical criteria for selecting between theories tended to be “internal” qualities of a theory, like mathematical simplicity or aesthetic balance, these later critics are willing to bring political and moral considerations to bear in the selection of a science.

A wonderful case study of “feminist science” is offered by Anderson in a 2004 paper analyzing a book-length treatment of divorce outcomes by Abigail Stewart and colleagues. Anderson breaks down the process of investigating a scientific question into eight steps—orienting to the background of the field, framing a question, articulating a conception of the object of inquiry, deciding what types of data to collect, establishing and carrying out data-gathering procedures, analyzing the data, deciding when to stop analyzing data, drawing conclusions—and then shows how Stewart’s feminist beliefs influence and inform her methodology at each of these steps.

To take just one example: Stewart and her team consciously chose to reject the “traditionalist” interpretation of divorce as a traumatic and negative event, and searched carefully for ways in which the divorces they studied had produced opportunities for personal growth and maturation on the part of both parents and children. Sure enough, they found them where previous researchers had not. One might object that cancer and broken legs also provide opportunities for personal growth, and that a study which focused on them without mentioning the pain and harm that they cause is a study that lies by omission, or by misplaced emphasis, just like the neuro-economist’s account of gift-giving. But this is precisely the feminists’ point! One need not posit data manipulation or academic dishonesty to see that a researcher’s prior beliefs about the desirability of divorce will shape the results of a study. Merely by changing the questions that are asked, by shifting the background conception of the subjects of study, and by seeking out and collecting a new type of evidence, “feminist science” is able to reach a new and different conclusion.

And none of this—none of the norms, values, and agendas guiding the outcomes of scientific research—touches on the way science is made up of fallible institutions and fallible individuals. Yet the mechanisms of peer review, grant-making and funding, access to laboratory resources, and so on make it all too easy for a dedicated cabal to deliberately (or even accidentally) freeze out research that does not conform to their vision of the world. The ease with which accidental or deliberate error can enter data analysis provides yet another mechanism for the views of a scientist to leach into his or her results. Given the degree of esteem and respect still paid to assertions bearing the imprimatur of a study, it would be madness for the partisans of any faction not to try to ensure that as many of their own as possible occupy positions related to science production.

Which is why my progressive scientist friends are deluded if they think that those genuinely concerned about “colonization, racism, immigration, native rights, sexism, ableism, queer-, trans-, intersex-phobia, & econ justice” can be dissuaded from attempting to capture not just the institutions of science, but its methods and research programs as well. Every instance of scientific inquiry, every study, rests on a vast submerged set of political, moral, and ultimately metaphysical assumptions. As the great quantum theorist Max Planck put it:

It is said that science has no preconceived ideas: there is no saying that has been more thoroughly or more disastrously misunderstood. It is true that every branch of science must have an empirical foundation: but it is equally true that the essence of science does not consist in this raw material but in the manner in which it is used. The material always is incomplete . . . [and] must therefore be completed, and this must be done by filling the gaps; and this in turn is done by means of associations of ideas. And associations of ideas are not the work of the understanding but the offspring of the investigator’s imagination—an activity which may be described as faith, or more cautiously, as a working hypothesis. The essential point is that its content in one way or another goes beyond the data of experience. The chaos of individual masses cannot be wrought into a cosmos without some harmonizing force and, similarly, the disjointed data of experience can never furnish a veritable science without the intelligent interference of a spirit actuated by faith.

But faith in what? It is entirely rational for people of all persuasions to seek to ensure that it is their faith that is doing the work. The rhetoric of the organizers of the March for Science does not reflect a temporary aberration, a momentary bit of enthusiasm, a fruitless revolt against a coldly rational age. It is the future. A future in which the politicization of science stops being implicit and starts being aware of itself. To face this future with intellectual sophistication rather than sloganeering, we need metaphysical reflection. Scientists would do well to start with a frank acknowledgment that they do not really know the deeper sources of their own dearly held scientific truths.

By William A. Wilson and originally published in First Things on November 2017 and can be seen here.

4th Circuit Hears Oral Arguments In Graduation Prayer and Venue Case

This is from religionclause.blogspot.com which you can find here:

On Tuesday, the U.S. 4th Circuit Court of Appeals heard oral arguments in American Humanist Association v. Greenville County School District. (Audio of full oral arguments.) At issue was the graduation ceremony prayer policy of the Greenville County, South Carolina school district, as well as its practice of holding some graduation ceremonies at a religious chapel on a local college campus. (See prior posting.) Greenville News reports on the oral arguments.

You can learn more about this issue here.

Yessource: Fragile Singles

Here are my latest uploads to YesSource, my Yes rarities youtube page (about which you can read here).  This post is another addition to my series of Yes music posts and a collection of all my Yes-related posts is here.  Yes, of course, is a, if not the, premier progressive rock band, and I am an enormous fan of it.

You can see all of my Yessource uploads here.

My latest YesSource uploads can be found here:

Post Navigation